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The formation of streamwise vorticity in turbulent flow 

By H. J. PERKINST 
Engineering Department, Cambridge University 

(Received 8 September 1969 and in revised form 9 April 1970) 

Mean streamwise vorticity in turbulent flow is shown to arise both from mean 
flow skewing and from the inhomogeneity of anisotropic wall turbulence. The 
structure of the Reynolds stress tensor is examined in several flows where the 
latter mechanism predominates. On the basis of a simple model for the anisotropy, 
the direction of the secondary currents is deduced for the corner boundary layer, 
the salient edge flow, and in the non-uniform nominally two-dimensional 
boundary layer. 

1. Introduction 
Steady secondary currents in fluid flow have been formally separated into two 

categories by Prandtl (1952). Secondary flows of the first kind, derived from 
mean flow skewing, are in general qualitatively well understood, whilst those of 
the second kind, caused by non-uniformities in wall turbulence, are as yet not 
fully explained. This paper is concerned with flows falling in the latter category. 

Historically, the analysis of secondary flows has proved most fruitful when 
attention is concentrated on the component of vorticity in the chosen primary 
direction. In  steady incompressible constant-property flow, the mean streamwise$ 
vorticity equation is 

a t  a t  a t  au au au a auv auw u-+v-+ w- = vVZt+[-+q-+[-+- --__ 
ax ay az ax ay az ax(  az ay ) 

in which 

7 = aujaz - a wjax, 

and g = avlax- aujay, 

using the notation of figure 1. This equation is most readily derived by eliminating 
the pressure, p ,  between the time-averaged Reynolds equations in the y and z 
directions. 

t Present address : G.E.C. Power Engineering Ltd, Whetstone, Leicester. 
'Streamwise' will be used to refer to the primary direction, z, which will also be the 
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direction of the undisturbed free stream. 



722 H .  J .  Perkins 

Terms on the left-hand side represent the convection of streamwise vorticity 
by the primary and secondary flows, or the total convection, Usatlas, where 
s is the co-ordinate along the local streamline. On the right-hand side, the first 
term accounts for the viscous diffusion of streamwise vorticity and the second 
represents streamwise vortex stretching. Taken together, the next two terms, 

describe the production of streamwise vorticity though the deflexion, or 
skewing, of the mean shear by a transverse pressure gradient or body force. 

x, u+u 

-W 

FIGURE 1. Tho co-ordinate system. 

Secondary flows generated by this mechanism are of Prandtl’s first kind and have 
received considerable attention since the early inviscid analyses of Squire & 
Winter (1951) and Hawthorne (1951). The usefulness of the latter in explaining 
flow behaviour in the outer region of a skewed turbulent boundary layer has 
been pointed out by many authors, notably Taylor (1959). 

The remaining three terms of equation (l), present only in the turbulent 
layer, are responsible for maintaining secondary currents of Prandtl’s second 
kind. Collectively these terms represent the sum effect of the time-averaged 
convection of turbulent vorticity by the turbulence plus the time-averaged pro- 
duction of turbulent vorticity; the latter by interactions identical to those of 
equation ( Z ) ,  but on an unsteady macro-scale. Prandtl first postulated the exist- 
ence of such secondary currents to explain the isovel (line of constant velocity) 
distortions he observed in the duct flow measurements of Nikuradse & Schiller, 
as early as 1926. In  straight non-circular ducts or channels he envisaged a system 
of longitudinal spirals in the flow conveying momentum into the corner regions. 
This required that velocity fluctuations tangential to the isovel exceed those 
perpendicular to the isovel so that a centrifugal acceleration is induced in regions 
of isovel curvature, propelling fluid radially outwards. Secondary currents, he 
concluded, must therefore be established in the direction of the isovel distortions 
and be supported by the anistropy of the turbulent direct stresses. All sub- 
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sequent secondary flow measurements in fully -developed (axially-homogeneous) 
straight non-circular duct flows have substantiated this qualitative argument. 
Attempts at  a more rigorous explanation, notably by Einstein & Li (1958) and 
Hinze (1967), have shown that secondary currents of the second kind are pro- 
duced by the non-uniformities in anisotropic wall turbulence. Figure 2, for 
example, demonstrates how the term P3 is able to produce a rotational accelera- 
tion of a fluid element about the streamwise axis. 

Y 

Az I 

FIGURE 2. Mechanism of vorticity production by the direct stresses. 
[a/& (aG/ay) - a/ay (aw7az)] > 0 inducing a clockwise rotation, 6 > 0. 

Clearly, anisotropic wall turbulence in any boundary-layer situation is 
potentially a source of the latter secondary currents whenever the flow is addi- 
tionally inhomogeneous parallel to the bounding surfaces in the y ,  x plane. This 
occurs principally in the non-circular duct or in boundary regions formed at the 
streamwise corner or edge of a surface. The resulting secondary currents are 
invariably of a weak streamwise cellular vortex form, the helix angle being 
typically less than three degrees in the constant-pressure layer. 

The form of the Reynolds stress tensort in such flows is examined with 
particular reference to the terms of (l), which is shown to undergo considerable 
simplification in fully-developed or slowly-developing flows. Empirical observa- 
tions in the zero-pressure-gradient turbulent corner boundary layer are extended 
to deduce the direction of the secondary currents in other flow situations where 
this simplified form of the streamwise vorticity equation might be expected to 

t Throughout this paper the double velocity correlations a t  a point in the flow will be 
referred to as Reynolds stresses. The omission of the density multiplier in incompressible 
flow is merely a convenience. 
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apply. Three examples in which secondary currents of the second kind are known 
to arise will be discussed: (i) a nominally two-dimensional boundary layer with 
transverse non-uniformities; (ii) the flow along a salient edge; and (iii) the flow 
along the right-angled intersection of two plane surfaces. 

2. The Reynolds stress tensor in transverse inhomogeneous flow 
The earliest recorded measurements of the nine dependent variables, that is, 

U ,  V ,  W ,  and the six non-zero components of the Reynolds stress tensor, are 
those of Brundrett (1 963) (Brundrett & Baines 1964) forfully-developed turbulent 
flow along a straight square duct. Stress measurements are also presented for 
ducts of rectangular and elliptic cross-section (aspect ratios of 3 and 2 respec- 
tively), relative to a Cartesian co-ordinate system having z along the duct axis 
and y and x parallel to the walls of the former, and aligned to the major and minor 
axes of the latter. The hot-wire procedure involved rotating a single inclined 
sensor to eight different orientations a t  each point in the flow, so that the 
stress VZU and the difference (2 - 2) emerge as functions of four measured r.m.s. 
voltages. Perkins (1  969) has shown that the accuracy of this method is very poor, 
a reading error of as little as 1 yo in each r.m.s. voltage inducing, in VZO, an 
error of k 100 yo in the square duct, for example. However, it was shown that ZZO, 
in the elliptic conduit, has a magnitude comparable with the wall shear stress 
over much of the flow, unlike the square or rectangular duct, where its value is 
approximately zero except in the immediate neighbourhood of the corner angle 
bisector plane. Their attempt to compute terms P3 and P4 of (1) must be regarded 
as inconclusive in view of the considerable scatter inherent in the stress measure- 
ments. The results of Gessner (1964a), (Gessner & Jones 1965) largely substan- 
tiate the findings of Brundrett although ducts of larger cross-section were used 
together with improved measuring techniques. The use of an X array hot-wire 
probe in conjunction with an adding/subtracting circuit (Gessner 1964 b )  gave 
considerably greater accuracy for 5.20 and (." -w"). The directional properties of 
the secondary correlation were also examined along an isovel, measuring in a 
' floating ' co-ordinate system (2, a, p), to locate planesin which Gfl was zero. Such 
planes werenot found to lie perpendicular to the isovels althoughearlier measure- 
ments (Gessner & Jones 1961) indicated that the ratio v$/$ takes its maximum 
value and is greater than unity when the (a,P) co-ordinates are located 
roughly tangential and normal to the local isovel. 

The author has recently completed what is believed to be the first detailed 
survey of the mean and turbulent characteristics of a symmetrical boundary 
layer developing at approximately constant pressure (and also in diffusing flow), 
along the right-angled corner of a square-sectioned duct. The research programme 
is described fully in Perkins (1970) and relevant portions are summarized here in 
an appendix. With a view to computing the terms of (1))  special attention has 
been paid to establishing an accurate hot-wire procedure, details of which are 
given in Perkins ( 1969). The representative boundary-layer cross-section used 
as an example in thc present paper is situated 51.75 inches downstream of a trip 
wire in the constant-pressure layer, the mean velocity field being as illustrat,ed in 
figure 3. The individual Reynolds stress components, omitted here for brevity, 

_ -  
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behave almost exactly as in the fully-developed square duct flow of Gessner, 
although of a marginally lower magnitude, in general, and becoming asymptoti- 
cally small or zero in the free stream. The symmetry of the stress field is excellent 
and satisfactorily reflected in figure 3. 

z inches 

FIGURE 3. The corner boundary layer, (U,, = 56.70 ft./sec, ap/az z 0). Region A :  secondary 
flow vectors Q = (P+ W2) l .  Region B: non-dimensional vorticity contours, IO[a/U,,, 
a = 1.30 inches. Wall shear velocity distribution on the y = 0 surface. 
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Having established the source of the data it is now possible to proceed with 
the examination of the stress tensor. 

(a )  The primary shear stresses, UV and UW 

The orientation of the resultant primary shear stress = (UiP + UW2)4 is shown 
in figure 4 (region A )  for fully-developed square duct flow, in figure 5 for a super- 
elliptic duct having a wall shape described by y4 + z4 = constant, and in figure 6 

/ 

aL 

/ 

P ~ a u i m  4. Square duct flow, Re? = 83,000 (after Brundrett 1963). Ragion A :  direction of 
resultant shear stress,Zg = (53 +uW2)*. Region B: orientationofplancs in which(-), = 0. 

t Based on mcnn through-flow velocity arid hydraulic diameter. 

(region B )  for the corner boundary layer. In each case the PI co-ordinate, aligned 
to the resultant primary shear stress, is seen to lie approximately perpendicular 
to the isovels, that is, in the direction of the maximum primary velocity gradient 
or rate of strain. This statement is equivalent to writing 

where, if a V/ax and a Wjax are small and negligible, E is an eddy viscosity coeffi- 
cient, isotropic in the y,  x or a,@ plane. In  the slowly-developing or fully- 
developed boundary region, dominated by secondary currents of the second 
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kind, it is thus reasonable to expect that the primary shear stress will 
remain aligned to the mean rate of strain when the flow field is distorted, both 
by the shape of the boundary and by induced secondary currents. 

1 UP0 

FIGURE 5. Direction of resultant shear stress, uVg = (;ii?P +uW2)i ,  in a superelliptic conduit 
Re = 123,400 (after Perkins 1967). -, hot-wire isovels; ---- , total pressure tube isovels. 

An additional feature of the resultant shear stress, defined in the above 
manner, is its apparent proportionality to the turbulence kinetic energy. In  the 
corner boundary layer the constant of proportionality varies between 0.114 and 
0.183 taking its lowest values along the corner bisector plane. 

( b )  The secondary shear stress, VW 

Unlike a conventional shear stress, which is strongly correlated with the mean 
shear, the secondary shear stress VW is composed of two parts in the boundary 
region. The first, wT1, is of conventional form, having a magnitude largely deter- 
mined by the local skewing, and is frequently written in terms of the isotropic 
eddy viscosity coefficient as 
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Such a statement automatically assumes an instantaneous adjustment in the 
shear stress field, both in magnitude and direction, in response to an adjustment 
in the mean shear. 

3 

2 
m 

; 
EI 
;s, 
.- 

1 

0 

FIGURE 6. The corner boundary layer (U, = 66.70 ft./sec, aplax % 0). Region A : orientation 
of planes in which = 0. Region 3: direction of resultmt shear stress 

- 
uvg = (ZV2 + 3G2 ) * -. 

---, total pressure tube isovels; ---- , hot-wire (X-probe) isovels. 

The second part, = V-iij - q, is peculiar to the boundary region, being 
induced through the distortion of the direct stress field by the changing shape 
of the boundary. Its magnitude will depend primarily on the degree of distortion, 
being zero in the transverse homogeneous flow and comparable with the primary 
shear stress in a severe boundary region. Consider the force equilibrium of the 
fluid element shown in figure 7. Neglecting (i) the transverse changes in 
momentum across the element (which gave rise to GGJ, and (ii) streamwise 
gradients in the primary shear stresses, then 

(=& = 0 when tan 2$ = - 2vW,/(G -2) (5) 

by elementary principal stress analysis. In  figures 4 (region B)  and 6 (region A )  
the calculated orientations of planes in which the second part of the secondary 
shear stress v,V, vanishes are shown as p2 planes. In  each case the correlation 
(=& would appear to be zero in a simple, or natural, orthogonal co-ordinate 
system having the solid surface as one boundary and the duct centre-line or free- 
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stream boundary as the other. Hence VW is small when the (2, az, pz) co-ordinate 
system is similar in form to the base Cartesian system, and takes its greatest 
values where the two systems are most dissimilar. This statement is consistent 
with the experimental observations and explains why ;ij, should take significant 

FIGURE 7. A fluid element under stress. 

values along the bisector of the right-angled corner or in the elliptic duct where 
secondary flows are extremely small but the conduit boundaries are non-planar. 
% in the above expression was obtained by subtracting from the measured shear 
stress the component 2)wI calculated from equation (4). The observations were 
found to be unchanged when VW replaced in the expression, the angle $ 
being relatively insensitive to the value of the numerator in the bisector region 
where (2 - w2) approaches zero. 

Gessner's experimental location of planes in which the secondary shear stress 
vanishes are in complete agreement with the above observations, although 
a consequence of this analysis suggests that the principal direct stresses are 
oriented such that the ratio v:/v$ takes its maximum value in the (a,,P2) 
co-ordinates, not in the isovel co-ordinates suggested by Gessner. 

In  the introduction the terms P2, P3 and P4 are collectively referred to as 
sources of streamwise vorticity of Prandtl's second kind. The above observations 
would suggest that this statement requires qualification. Having divided @W 
into two parts, a similar division must now arise in P4, the component P4, being 
associated with secondary flows of the first kind, whereas P4, is analogous to P3. 
Further, since is very muoh dependent on the current form of the streamwise 
vorticity field, P4, is unlikely to represent a production term having more the 
role of a spatial redistribution or diffusion term. Only the component P4, will 
represent a source of streamwise vorticity of the second kind. The interohange- 
ability of zIzuz and (v2- w2) by the above expression extends also to  the produc- 
tion terms P4, and P3, as pointed out by Brundrett & Baines. 

- 

_ _  

- - .  
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( c )  The anisotropic direct stresses 
According to Prandtl’s hypothesis, and previous investigations, the most 
important term in equation (1)  is Ps, the production of streamwise vorticity by 
the anistropy of the transverse direct stresses. A detailed examination of this 
difference is therefore warranted. 

The kinetic energy of the velocity fluctuations in a turbulent boundary layer 
is, in general, shared unequally between the velocity components in any thee  
mutually _ _  perpendicular directions ; that is, the turbulence is anisotropic and 
(v2- w2) is non-zero. Curve 4 in figure 11 shows, for example, this difference in 
Klebanoff’s (1 954) zero-pressure-gradient boundary layer developing in the 
x direction over the y = 0 surface. Without discussing the complex processes 
involved in producing, distributing and eventually dissipating this energy it is 
possible to account for the form of (2- 2) in terms of simple physical arguments. 
Within the boundary layer the component velocity fluctuations perpendicular 
to the solid surface, v, are attenuated or oonstrained by the proximity of the 
surface, and so remain less than those parallel to the wall, w. The eddy motions 
are therefore elliptic when viewed in the y, z plane, the axes of the ellipse being 
aligned to the p2 co-ordinates, discussed above. Consequently the difference 
between 3 and w2 will be most strongly dependent on the distance from the 
surface. This ceases to be true on approaching the wall, where v and w arerapidly 
damped by the fluid viscosity, w first rising to a peak following closely the form 
of u, which is strongly Reynolds-number dependent. Non-dimensionalizing the 
Reynolds stresses with u,, the local wall shear velocity, it should be possible for 
regions not too close to the wall to write 

where I is the characteristic length y at which 2 = 2, or to a close approxima- 
tion, 6 the thickness of the boundary layer a t  the point where U = 0.995U0, 
andf is a universal function. The term ‘local’ refers to the value of u, at the 
position on the wall nearest to the point in question. 

Figure 10 shows experimental measurements of (w2 - wz) collected in the non- 
uniform boundary layer developing on one wall of the author’s duct at  points 
away from the corner region. When plotted in the form (6) (note that the 
boundary layer is on the z = 0 surface so that z replaces y in (6), andf changes 
sign) the data collapse onto a common curve for different values of u, and 6. For 
the corner boundary layer, where each side of the corner bisector plane is con- 
sidered separately, the data are plotted according to the above model in figure 9, 
1 having the distribution shown inset. Similarly in the square duct, figure 8, the 
data of Gessner reduce to a single curve for the chosen distribution l ( z ) .  The 
results for the four experiments discussed above are summarized as figure 11 
for comparison. All the curves are in agreement as to the basic form of (w2- w2) 

but disagree on the absolute magnitude. This discrepancy is attributable to four 
main sources : (i) A genuine non-universality. (ii) Experimental errors in 
measuring (vz - 2). The maximum scatter expected in the results for each 1 % 

- -  

_ _  



Xtreamwise vorticity in turbulent $ow 731 

reading error in 2r and w is shown superimposed on figure 11 and clearly could 
account for much of the discrepancy. (iii) Variations in interpretation of inclined 
hot-wire signals in the various experiments. Errors in estimating the function 

1.2 I I I I I I I I I 

1.0 - 

0.8 - 
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5 
170.6 - 
13 

I 
0.4 - - 

0.2 - - 

0 
0 0.2 0.4 0.6 0.8 1 .o 

YlE - _  
FIGURE 8. (v2-w2) in a square duct, Re = 150,000 (after Gessner 1964). Values of z/u and 
l/u: +, 1.00, 0.750;), 0.875, 0.750; d,  0-750, 0.750; d, 0.625, 0.625; O-, 0.500, 0.500; 
q, 0.375, 0.375; 9,  0.250, 0.250; 9 ,  0.125, 0.125. 
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FIGURE 9. Is-$) in the corner layer. Open symbols refer to region B. Values of y in inches: 
-o, 2.00;*, 1.50; 4, 1.25; d, 1.00; +, 0.80; 4,0.60; 9,  0.40;p, 0.25. 
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FIGURE 10. (v2 - w*) in a non-uniform nominally two-dimensional boundary layer. 

Symbol * ’. 6 rl 0- .I 
y (inches) 8.0 7-0 6.0 5-0 4.0 3.0 
6 (inches) 1.40 1-35 1.25 1.31 1-17 1.16 
%I% 0.0336 0-0340 0.0346 0.0342 0.0347 0.0349 

N C  . 3 

IS 
I 

1.6 

1.4 
Expected scatter per 1 % 
error in tr and w 1.2 

1 .o 

0.8 

0.6 

0.4 

0.2 - 

0 0.2 0.4 0.6 0.8 1.0 
0 

YIZ 
FIGURE 11. Summary of (3-s) data. Curve: 1 ,  square duct flow (figure 8); 2, corner layer 
(figure 9); 3, non-uniform boundary layer (figure 10); 4, Klebanoff zero-pressure-gradient 
boundary layer. 
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g(0) (appendix) in the X-probe response equation will clearly be reflected in the 
3 and 2 measurements. Gessner has assumed that n = m = g, whereas 
Klebanoff has used X-probes of increased transverse sensitivity (60 degrees 
included angle) for which the yaw response is, in general, ill defined. (iv) Experi- 
mental errors in estimating u,, one of the most difficult boundary-layer quantities 
to measure. 

Bearing in mind the above sources of error, it is reasonable for the present to 
write the anisotropic stress (2-w")luf as a universal function of y/1 (or 211) for 
y/l > 0.1, where 1 describes a curve along which2 = 3. 

The natural extension of this model in a diffusing boundary-layer flow is 
described in Perkins (1970). 

3. The terms of the streamwise vorticity equation 
Each term in equation (1) can be deduced from the secondary flow or Reynolds 

stress measurements by taking spatial derivatives of at least second order, 
a highly inaccurate process when applied to the VW and (v2- w2) data. However, 
by averaging the data gathered on each side of the bisector plane in the corner 
boundary layer at  two measurement stations along the duct 12inches apart, it was 
possible to arrive at the distributions shown as contours in figure 12. Such a 
procedure necessarily assumes that each of the four sets of data implied above 
represents an independent assessment of the same event. Of the terms involving 
a streamwise derivative PI, P2 and $aU/ax were found to be negligible over 
the test area, 2 2 y (and x )  3 0.15 inches, whilst Ua$/ax, for which only one 
estimate was possible, varied erratically having the qualitative form indicated. 
These calculations suggest that the terms P3 and P4 are of equal order contrary 
to previous calculations by the author and by Brundrett & Baines in fully-de- 
veloped square duct flow, where P4 tended to be negligible. The resulting form 
of equation (1) in the slowly-developing corner boundary layer is thus 

_ _  

us agas = v(aqay2 + a 2 . q a . q  + pa + p4, (7) 

where the viscous diffusion, although negligible over the above-mentioned test 
area, is retained to balance the near-wall production of streamwise vorticity 
where Us is small and vanishing. The importance of P3 in generating the observed 
secondary currents is here confirmed and in addition the significance of the 
transport term P4 has been demonstrated. It was found impossible to separately 
compute P4, and Pda with any degree of confidence, although the two components 
were thought to be of approximately equal order over the test area. 

4. Application of the simplified streamwise vorticity equation 
In  the developing boundary-layer situation, (7) must be solved in conjunction 

with the streamwise momentum equation and the continuity condition, whereas 
in fully-developed duct flows the former is readily soluble, in isolation, for ((y, z )  
given the distribution of the Reynolds stresses VW and (3 - G), or equivalently 
P3 and P4. Unfortunately experimental data in near-wall regions are at present 
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FIGURE 12. Term in the streamwise vorticity equation, corner boundary layer, 
a = 1.3 inches, U, = 56-5 ft./sec. 
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lacking, precluding such a solution. Nevertheless, it is possible to employ this 
simplified equation qualitatively in deducing only the direction of the secondary 
currents arising in response to a production field determined by the flow geometry. 

Integrating (7) along the local mean streamline, which will have an approxi- 
mately helical form in the spiral secondary currents, then 

neglecting the viscous diffusion term away from the solid surface. This statement 
suggests that the streamwise vorticity should tend to adopt the sign of the 
quantity ( P3 + P4) in the outer flow, if the latter is predominantly of one sign. 
This is demonstrably true of the corner boundary layer where the vorticity 
field 6 in figure 3 takes the signof (P, + P4), or of P3 if P4 is dropped to simplify the 
argument. It should be noted that all the terms in ( l ) ,  and in addition 6 and 
(v2 - w2), are antisymmetric about the corner bisector plane. 

If i t  is assumed that this empirical observation will apply equally to any 
boundary-region-type flow, then it is possible to determine the direction of the 
outer region secondary currents (given by the local sign of the streamwise 
vorticity), - -- simply by knowing the sign of P3. From themodel proposed earlierfor 
(w2 - w2),  the local production is given by 

_ _ _  

where the dash denotes differentiation with respect to (y / l ) .  Since only the sign 
of this term is required here, the exact behaviour off is not terribly important, 
the consequences of the model being adequately demonstrated by the approxi- 
mation 

f(Yl1) = - (1  - Y m >  

which gives for the production 

Mean streamwise vorticity is therefore produced by the anisotropy of the 
turbulence when a transverse gradient arises in u, and/or 1, the chosen parameters. 
By considering the distributions of these quantities in various examples, the 
direction of the induced secondary currents will be deduced. 

( a )  The nominally two-dimensional boundary layer 

Still concentrating on slowly-developing flows, the type of boundary layer 
implied here has the form illustrated in figure 13, containing a transverse periodic 
deformation in u, and/or 8. Application of equation ( lo) ,  with l = 6 the local 
thickness of the layer, suggests the following properties: (i) In  planes such as 
B-B', which locally constitute planes of flow symmetry, au,,/az and a&/ax are 
zero so that P3, and consequently by the arguments presented above, are also 
zero. (ii) In planes of type A-A', u, is increasing and 6 decreasing, giving a pro- 
duction greater than zero and hence a clockwise secondary current. (iii) For 
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C-C', which is a mirror image of A-A', the reverse is true, suggesting a family 
of secondary flow cells distributed along the surface each of opposite rotation to 
its immediate neighbours, as illustrated. 

C B A B c B A 

c' B A' c' 3' A' 

z 
FIGURE 13. Model for non-uniform boundary layer. --, - - - , lines of constant <. 

z inches 

FIGURE 14. The non-uniform nominally two-dimensional boundary layer 
(after de Bray 1967) (-o-o--, interpolated from de Bray's data). 

Secondary currents of the second kind are therefore present in this layer and 
directed in such a way as to maintain or amplify the existing flow deformations. 
This deduction is consistent with the ' peak-valley ' formation commonly 
encountered in nominally two-dimensional boundary-layer flows and originally 
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demonstrated by Klebanoff & Tidstrom (1959). The origin of the non- 
uniformities, which are not themselves spontaneously produced by the turbu- 
lence, remains a subject for debate. By systematically testing various combina- 
tions of screens, honeycombs and transition devices, de Bray (1967) succeeded 
in confirming the findings of Bradshaw (1965) that the transverse irregularities 
originate behind wind-tunnel screens, the degree of non-uniformity being simply 
a function of the screen blockage. Figure 14 shows the cross-section through 
a boundary layer measured by de Bray using a very unfavourable screen con- 
figuration. The variation in u, amounts to t- 8 yo and in 6, & 12 %. The data 
presented in figure 10 were also collected in a non-uniform boundary layer having 
only a k 2 % variation in u, (the experimental scatter probably exceeds & 2 yo) 
but a ? 10 yo variation in 6. 

(b)  The salient edgefEow 

The experimental results of Elder (1960) for flow along the streamwise edge of 
a finite flat plate are presented as figure 15. Elder established the existence of 
weak secondary currents in regions C and F and suggested that they were of the 
type already familiar in fully-developed duct flows. Since the anisotropy model 
proposed earlier is valid only for wall turbulence it is unlikely to apply beyond 
the edge of the surface where v and w have approximately the same magnitude. 

In  region B, however, where 1 = 6, u, is increasing in z while 6 decreases, so 
that P3 and 6 are positive. Clockwise secondary currents in this region are con- 
sistent with the negative vorticity observed by Elder in the neighbouring region. 
The reverse will be true of region E,  which is a mirror image of B. 

An alternative model for the stress difference (3-3) must be devised for 
regions C and F ,  but since2 M 2 it is unlikely to explain the vorticity production 
there. Although the author was unable to locate stress tensor measurements in 
the vicinity of an edge, it is to be expected, by the arguments of 5 2 (b) ,  that VW 
and consequently P4 will dominate in this region. Since the two stresses and 
(v2-w2) can be interchanged through a co-ordinate rotation it should be 
possible to construct a system of co-ordinates (2, a, /3) in which (v,V,), = 0 and 
( v i  - wi) has the form already described. Such a co-ordinate system would intui- 
tively be of polar form centred on the edge. Assuming the edge has a finite radius 
of curvature R, then, in terms of the cylindrical polarco-ordinates (x, r ,  4) shown 
in figure 15, let 

(v-)~ M 0 and (v;-v$)/u; = fr?), 
where 1 = 8, the radial distance from the edge to the free stream. The vorticity 
production becomes 

__ - 

_ _  

_ -  

which, using again the simple function 
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(i) Along the plane of symmetry q5 = in, both au,/aq5 and 88/84 are zero, 
secondary flows being absent. (ii) For 0 < q5 < in, 8 is increasing in 4,  the 
boundary-layer thickness doubling over the interval, whereas u, remains 

FIGURE 15. The edge flow (after Elder 1960). -, - - - , lines of constant E.  

approximately constant. Hence, negative vorticity is induced in this region. 
(iii) For in < q3 < n the reverse is true and the vorticity is positive. The secondary 
currents suggested by the revised anisotropy model are entirely consistent with 
Elder’s observations. In  regions A and D it is unlikely, recalling the previous 
example, that secondary currents will be entirely absent. 

( c )  The corner boundary layer 

The similarity between the slowly-developing corner layer and fully-developed 
square duct flow, both in the strength, scale and direction of the secondary 
motions and in the details of the Reynolds stress tensor, has been established, so 
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that qualitative arguments presented here for the former will apply equally 
to the latter. By retaining the Cartesian co-ordinate system in which (2 - 2) 
has been successfully modelled and an expression for P3 devised, additional 
constraints must be imposed in satisfying the symmetry requirements in the 
bisecting plane. In  this plane, y = z = I ,  the production P3 must be zero, so that 

f”(1) = f’(1) (-4) z2 au, 
u, az 

from equation (9), or, since f is a universal function, u, varies as a power of 2 .  

Such a variation is supported by the author’s data, although Preston tube esti- 
mates of u, near to the corner line must be viewed cautiously as the region 
correlated by the ‘inner law’ diminishes and probe blockage effects become 
largely indeterminate. 

Continuing the arguments used in the previous two examples then, 

for the region where 1 = x .  Since au,/az is less than u7/2z, the power law index 
being less than 4, then P3 and consequently ( will be negative. On the opposite 
side of the bisector plane the vorticity will be of reversed sign. 

Further from the corner line the arguments and the conclusions are as before, 
suggesting that an entirely homogeneous asymptote to  the corner layer is 
unlikely. It is to be expected that the terms PI and Pal, associated with the 
mutual skewing of the two layers, will dominate in this region, but unfortunately 
it has not been possible to confirm this from the present experimental data. 

The author is indebted to Professor J. H. Horlock who has supervised the 
research described here and assisted in the preparation of this paper. 

Appendix. Corner boundary-layer experiments 
A square-sectioned duct 12 inches wide and 66 inches in length was attached 

to the 149 inch square exit of a blower wind tunnel, in such a way that two sides 
of the duct formed a continuation of the wind tunnel walls. The remaining two 
sides, having sharp leading edges, were machined to form an accurate right- 
angled corner, the test corner. The former pair of sides were constructed from 
perforated sheet steel, the perforations remaining blanked off on the inside 
for the experiments described here, and the latter pair were of Perspex. Con- 
struction of the wind tunnel and the duct was such that geometric symmetry 
about the bisector of the test corner was maintained to a high accuracy. The 
boundary layers developing from the leading edge of the solid surfaces were 
tripped by a wire 0.1 inches in diameter placed 2.25 inches from the leading edge. 
A slightly favourable streamwise pressure gradient persisted throughout the 
length of the duct. 

Reynolds stresses were measured using an ‘ X ’  array hot-wire probe rotated 
in the flow relative to the Cartesian co-ordinate system in which the stresses were 
required. The plane of the X-probe is aligned in turn to the x, y and 2, z planes 
and to two intermediate planes at  45 degrees to the y direction. The six stresses 
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are deduced from nine r.m.s. voltages, the readings taken in each orientation 
being chosen so that each stress depends on a maximum of two measured 
quantities. I n  the response equation used by the author the heat loss from the 
constant-temperature wire is written in terms of three almost separable functions 
of ambient temperature, velocity and yaw angle : 

E 2 -  E$ = K U " ~ i n m 8 ,  

where E is the instantaneous bridge voltage, E, the bridge voltage a t  zero flow, 
8 the instantaneous inclination of the wire to  the velocity vector, and K(U) ,  
n( U ) ,  and m( U ,  8) are constants for a given velocity, ambient temperature, over- 
heat ratio, and yaw angle. The ratio m/n is thought to  be only weakly dependent 
on U ,  and strongly dependent on the geometry of a given wire. Hence, the 
fluctuating bridge voltages for the two wires t~ and b of the X-probe are 

e ,  = y,(u + g,(@ w )  and eb = ya(u + go(@ v), in the z, y plane, 

where y is a function of E,  E,, K ,  U and n, and g = (m/n) cot 8,8 being theinclina- 
tion of the wire t o  the time-averaged velocity vector. The exponent n must be 
determined from a ( E 2 - E i )  wersus U calibration (preferably with 8 set a t  
90 degrees), and m/n(6) from a yaw calibration. For the latter, the Reynolds 
shear stress was measured in a pipe, 34 inches in diameter and approximately 
100 diameters in length, and compared to  that predicted by the axial pressure 

Mean secondary currents were deduced from hot-wire yaw measurements in 
the z, y plane only. Plow symmetry about the corner bisector plane was assumed 
in calculating &, the resultant secondary flow vectors illustrated. 

drop. 

REFERENCES 

BRADSHAW, 1'. 1965 J .  Fluid Mech. 22, 679-687. 
BRUNDRETT, E. 1963 Ph.D. Thesis, University of Toronto, TP 6302. 
BRUNDRETT, E. & BAINES, W. D. 1964 J. Fluid Mech. 19, 375-392. 
DE BRAY, B. G. 1967 Aero. Res. Counc. R & M 3578. 
EINSTEIN, H. A. & LI, H. 1958 Amer. Geophysical Union, 39, 1085-1088. 
ELDER, J. W. 1960 J .  FluiclMech. 5, 133-153. 
GESSNER, F. B. 1964a Ph.D. Thesis, Purdue University. 
GESSNER, F .  B. 1964b ASME paper 64-WA/FE-34. 
GESSNER, F. B. & JONES, J. B. 1961 J .  Basic Engng ASME, 83, 657. 
GESSNER, F. B. & JONES, J. B. 1965 J .  Fluid Mech. 23, 689-713. 
HAWTHORNE, W. R. 1951 Proc. Roy. SOC. A 206, 374. 
HINZE, J. 0. 1967 Phys. Fluids, Suppl. 10, S 122-S 125. 
KLEBANOFF, P. S. & TIDSTROM, K. D. 1959 N A S A  TN D-195. 
KLEBANOFF, P. S. 1954 NAGA T N  3178 (or N A C A  Rep. no. 1247, 1955). 
PERRINS, H. J .  1967 M.A.Sc. Thesis, University of Waterloo. 
PERKINS, H. J. 1969 Cambridge University Internal Rep. CUEDIA-TurbolT.R.8 (or Aero. 

PERKINS, H. J.  1970 Ph.D. Thesis, Cambridge University. 
PRANDTL, L. 1952 Essentials of Fluid Dynamics. London: Blackic. 
SQUIRE, H. B. & WINTER, K. G. 1951 J .  Aero Sci. 18, 271. 
TAYLOR, E. S. 1959 J .  Basic Engng A S M E ,  81, 297-304. 

Res. Counc. 31 748-F.M. 4118-Turbo. 95). 


